If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-317=0
a = 2; b = 6; c = -317;
Δ = b2-4ac
Δ = 62-4·2·(-317)
Δ = 2572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2572}=\sqrt{4*643}=\sqrt{4}*\sqrt{643}=2\sqrt{643}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{643}}{2*2}=\frac{-6-2\sqrt{643}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{643}}{2*2}=\frac{-6+2\sqrt{643}}{4} $
| 5x+6+5x=25 | | x-(0.16*x)-(0.2*x)=1000 | | 60/(x-2)=x | | 30=5y+25 | | z+4/3=1/3 | | -9-3=3x+5-2x | | 68=5y-7 | | (4x+2)+(3x-5)+(2x+10)=145 | | 4z-35=10z-125 | | 2x^+4x-5=0 | | -32=-5k+`13k | | 7x-9=-3x+41 | | 3j+3=2j-10 | | 30=5y+255 | | 3(3y-6=18 | | 3(x-4)^2=21 | | 5-3(x-6)=5x+20 | | x^2+(x+3)^2=317 | | 19/2x=13 | | 16=-9u+7u | | 6x+8=23+23 | | F=(8x+9)-(-3x+4) | | -7/17p=4 | | 14x+19+-21=180 | | x-x/5=2/3 | | (x/4-1=3 | | x-13-4x=22 | | (x/3)+1=3 | | -3/19p=4 | | 88-w=217 | | -6x-29=2(-x-4) | | x-13=4x=22 |